
Some simple potentials 
BT2, §2.2.2



Point mass (Keplerian)

Φ(r) = −
GM

r

vc(r) = ( GM
r )

1/2

ve(r) = ( 2GM
r )

1/2

Planets

MBH

Planets around stars 
Stars around massive black holes



Plummer model

Φ(r) = −
GM

r2 + b2

ρ(r) =
3M

4πb3 (1 +
r2

b2 )
−5/2

Star clusters 
Gravitational softening to avoid divergences

Plummer scale length

≈ const . inside b



Homogeneous sphere

M(r) =
4πr3ρ

3
; ρ = const

vc(r) = ( 4πGρ
3 )

1/2

r

T =
2πr
vc

= ( 3π
Gρ )

1/2

r

Orbital period

independent of radius



Free fall/dynamical time

d2r
dt2

= −
GM(r)

r2
= −

4πGρ
3

r

r = A sin(Ωt)

Ω = ( 4πGρ
3 )

1/2

tff =
T
4

=
1
4

2π
Ω

= ( 3π
16Gρ )

1/2

≈
0.767

(Gρ)1/2
∼

1
(Gρ)1/2

Radial acceleration

Simple harmonic oscillator. Try solutions of the form

Valid solution iff

Particle “dropped" at r reaches center in 1/4 period, i.e. free fall time



Singular isothermal sphere

ρ(r) = ρ0 ( r0

r )
α

; α = 2

vc = 4πGρ0r2
0 = const .

Simple model for systems with flat rotation curve or vel. disp. profile 
- fair approximation to many galaxies, some radii in dark matter halos 
- often used for toy models 
- usually unrealistic as r→0, since there ρ→∞

hence, constant “temperature"

Special case of power-law model



Two power-law density models

ρ(r) =
ρ0

(r/a)α(1 + r/a)β−α

Hernquist (1990) : α = 1, β = 4
NFW (1996) : α = 1, β = 3

elliptical galaxies, galaxy bulges

dark matter halos

log r

lo
g 
ρ

a

α

β



de Vaucouleurs’ R1/4 law for ellipticals and bulges

I = surface brightness 
R = projected radius 
Re = effective radius enclosing 1/2 of light M87

A good fit to the light profile of 
many ellipticals and bulges:

(constant such that Re 
encloses 1/2 light)



Sérsic profile
Generalization of de 
Vaucouleurs’ R1/4 law

n=Sérsic index    (=4 for R1/4) 

More luminous galaxies tend to 
have larger n 

n=1 gives exponential profile  

which is a good approximation to 
many spirals



Hernquist profile

Hernquist 90

19
90
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..
35
6.
.3
59
H

Sky projection is close to R1/4 law, 
but 3D mass distribution is 
analytically tractable (unlike R1/4): 

M = total mass 
a = scale radius 

Convenient for theoretical models of 
ellipticals and bulges

19
90
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J.
..
35
6.
.3
59
H

de Vaucouleurs

Hernquist



Dark matter halo properties  
from 

cosmological N-body simulations 



Halo definitions
Usually defined as structures whose mean enclosed density exceeds 200ρcrit: 
(this comes from models of halo virialization in expanding universes — see “spherical collapse”)

virial mass virial radius

Other definitions are also common, e.g. 
- 500c (for galaxy clusters in which 

typically only inner core is well 
studied in X-rays) 

- 200m (relative to mean matter density, 
instead of critical density) 

- 180m (better match to some halo 
finding algorithms) 

- …
Millennium dark matter simulation (z=0)



Dark halos are much larger than galaxies

E.g., Milky Way: 

- scale length of stellar 

disk Rs,★~few kpc 

- viral radius of halo 

R200c~200 kpc

because baryons can radiate away their energy and condense but dark matter 
cannot, so is supported in larger structures by internal kinetic energy



The standard Λ Cold Dark Matter cosmology

‣ spectrum of initial density fluctuations 
‣ what the Universe is made out of 
‣ how old it is and how it has expanded in time

Combined with other astronomical 
measurements, the cosmic microwave 
background  tells us: 

Ωb

Ωdm

ΩΛ



Introduction

Description of the method
MUSIC (MUlti-Scale Initial Conditions) generates cosmological initial conditions for a hierarchical set of nested regions. 

A detailed description of the method can be found in the code paper Hahn&Abel (2011), http://arxiv.org/abs/1103.6031. 

We kindly refer the reader to that paper for all technical aspects as well as performance and validation of the code.

Cookbook for setting up a zoom simulation with MUSIC
The procedure for setting up a zoom simulation follows typically the procedure of 4 steps, given below. Note that 

resolution levels in MUSIC are specified by their linear power-2 exponent, i.e. a resolution of 1283 cells or particles 

corresponds to level 7 (log2 128=7). We use the term “lower” for levels synonymously with “coarser” and “higher” with 

“finer”.

Run a unigrid dark matter-only pre-flight simulation

In order to set up unigrid initial conditions with MUSIC, select first the desired resolution for this pre-flight simulation. 

Assume we want to run a 1283 simulation, the coarse grid level has to be set to log2 128=7. Since we want to run a 

unigrid simulation, both levelmin and levelmax in section [setup] should be set to 7. Also the coarse grid seed 

needs to be chosen now and must not be changed afterwards. To do this, we set seed[7] in section [random] to the 

desired random seed. This seed determines the large scale structure and we will only add subgrid noise when performing 

refinement later. Now, set the box size, starting redshift, all the cosmological parameters and the input transfer function in 

the respective sections. Finally, select the output plugin in section [output] for the code with which you wish to 

perform this pre-flight simulation. Finally run MUSIC with the configuration file that contains all your settings and start your 

simulation. Note that you also have to explicitly specify a redshift at which to generate the initial conditions. 

MUSIC - User's Manual 3

Density field in a 100 Mpc/h box with two initial levels of 

refinement generated with MUSIC.

1x 4x

16x64x

Example of an N-body simulation of a deeply nested re-

gion of 6 initial levels generated with MUSIC and evolved 

with Gadget-2 to achieve an effective resolution of 81923 

with 11603 particles in the high-res region.

Cosmological initial conditions

Microwave sky Simulation ICs

Visualization credit: Hahn

Gaussian random field filtered with "transfer function” to 
model early Universe physics (photon-baryon interactions)



What is smoothed particle hydrodynamics?
 

DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh 
(volume elements)

representation by fluid elements 
(particles)

resolutions adjusts 
automatically to the flow

high accuracy (shock capturing), low 
numerical viscosity

collapse

principle advantage: principle advantage:

What is smoothed particle hydrodynamics?
 

DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh 
(volume elements)

representation by fluid elements 
(particles)

resolutions adjusts 
automatically to the flow

high accuracy (shock capturing), low 
numerical viscosity

collapse

principle advantage: principle advantage:

N-body simulations
• Discretize mass with N particles 

‣ in cosmology, usually tree or particle-

mesh methods to solve Poisson’s 

equation 

• Naturally adaptive in cosmology



History of N-body simulations
Collisionless 

(cosmological)

Collisional 
(e.g., globulars)

Dehnen & Read 11

Moore’s law



Structure formation in Λ cold dark matter

baryons cool at center of dark matter halos, fragment into stars

40 M
pc

cosmological N-body simulation showing dark matter evolution

Heitmann+15



Dark matter in Millennium simulation (z=0 fly-through)

Springel+051010 particles, 700 Mpc



Statistically, the model galaxy distribution 
agrees well with observations

observed

simulated



Dark matter halo mass function

based on this formula may contain large errors15. We return below to
the important question of the abundance of quasars at early times.
To track the formation of galaxies and quasars in the simulation,

we implement a semi-analytic model to follow gas, star and super-
massive black-hole processes within the merger history trees of dark
matter haloes and their substructures (see Supplementary Infor-
mation). The trees contain a total of about 800 million nodes, each
corresponding to a dark matter subhalo and its associated galaxies.
This methodology allows us to test, during postprocessing, many
different phenomenological treatments of gas cooling, star for-
mation, AGN growth, feedback, chemical enrichment and so on.
Here, we use an update of models described in refs 16 and 17, which
are similar in spirit to previous semi-analytic models18–23; the
modelling assumptions and parameters are adjusted by trial and
error to fit the observed properties of low-redshift galaxies, primarily
their joint luminosity–colour distribution and their distributions of
morphology, gas content and central black-hole mass. Our use of a
high-resolution simulation, particularly our ability to track the
evolution of dark matter substructures, removes much of the
uncertainty of the more traditional semi-analytic approaches based
onMonte Carlo realizations of merger trees. Our technique provides
accurate positions and peculiar velocities for all the model galaxies. It
also enables us to follow the evolutionary history of individual
objects and thus to investigate the relationship between populations
seen at different epochs. It is the ability to establish such evolutionary
connections that makes this kind of modelling so powerful for
interpreting observational data.

The fate of the first quasars
Quasars are among the most luminous objects in the Universe and
can be detected at huge cosmological distances. Their luminosity is
thought to be powered by accretion onto a central, supermassive
black hole. Bright quasars have now been discovered as far back
as redshift z ¼ 6.43 (ref. 24), and are believed to harbour central

black holes with a mass a billion times that of the Sun. At redshift
z < 6, their co-moving space density is estimated to be
,(2.2 ^ 0.73) £ 1029h3Mpc23 (ref. 25). Whether such extremely
rare objects can form at all in a LCDM cosmology is unknown.
A volume the size of the Millennium Simulation should contain,

on average, just under one quasar at the above space density. Just
what sort of object should be associated with these ‘first quasars’ is,
however, a matter of debate. In the local Universe, it appears that
every bright galaxy hosts a supermassive black hole and there is a
remarkably good correlation between the mass of the central black
hole and the stellar mass or velocity dispersion of the bulge of the
host galaxy26. It would therefore seem natural to assume that, at any
epoch, the brightest quasars are always hosted by the largest galaxies.
In our simulation, ‘large galaxies’ can be identified in various ways,
for example, according to their dark matter halo mass, stellar mass or
instantaneous star-formation rate.We have identified the ten ‘largest’
objects defined in these three ways at redshift z ¼ 6.2. It turns out
that these criteria all select essentially the same objects: the eight
largest galaxies by halo mass are identical to the eight largest galaxies
by stellar mass; only the ranking differs. Somewhat larger differences
are present when galaxies are selected by star-formation rate, but
the four first-ranked galaxies are still among the eight identified
according to the other two criteria.
In Fig. 3, we illustrate the environment of a ‘first quasar’ candidate

in our simulation at z ¼ 6.2. The object lies on one of the most
prominent dark matter filaments and is surrounded by a large
number of other, much fainter galaxies. It has a stellar mass of
6.8 £ 1010h21M(, the largest in the entire simulation at z ¼ 6.2, a
dark matter virial mass of 3.9 £ 1012h21M(, and a star-formation
rate of 235M(yr21. In the local Universe, central black-hole masses
are typically,1/1,000 of the bulge stellar mass27, but in the model we
test here these massive early galaxies have black-hole masses in the
range 108–109M(, significantly larger than low-redshift galaxies of
similar stellar mass. To attain the observed luminosities, they must
convert infalling mass to radiated energy with a somewhat higher
efficiency than the ,0.1c 2 expected for accretion onto a non-
spinning black hole (where c is the speed of light in vacuum).
Within our simulation we can readily address fundamental ques-

tions such as: Where are the descendants of the early quasars today?
What were their progenitors? By tracking themerging history trees of
the host haloes, we find that all our quasar candidates end up today as
central galaxies in rich clusters. For example, the object depicted in
Fig. 3 lies, today, at the centre of the ninth most massive cluster in the
volume, of mass M ¼ 1.46 £ 1015h21M(. The candidate with
the largest virial mass at z ¼ 6.2 (which has stellar mass
4.7 £ 1010h21M(, virial mass 4.85 £ 1012h21M(, and star-for-
mation rate 218M(yr21) ends up in the secondmostmassive cluster,
ofmass 3.39 £ 1015h21M(. Following themerging tree backwards in
time, we can trace our quasar candidate back to redshift z ¼ 16.7,
when its host halo had a mass of only 1.8 £ 1010h21M(. At this
epoch, it is one of just 18 objects that we identify as collapsed systems
with $20 particles. These results confirm the view that rich galaxy
clusters are rather special places. Not only are they the largest
virialized structures today, they also lie in the regions where the
first structures developed at high redshift. Thus, the best place to
search for the oldest stars in theUniverse or for the descendants of the
first supermassive black holes is at the centres of present-day rich
galaxy clusters.

The clustering evolution of dark matter and galaxies
The combination of a large-volume, high-resolution N-body simu-
lation with realistic modelling of galaxies enables us to make precise
theoretical predictions for the clustering of galaxies as a function of
redshift and intrinsic galaxy properties. These can be compared
directly with existing and planned surveys. The two-point correlation
function of our model galaxies at redshift z ¼ 0 is plotted in Fig. 4
and is compared with a recent measurement from the 2dFGRS

Figure 2 | Differential halo number density as a function of mass and
epoch. The function n(M, z) gives the co-moving number density of
haloes less massive than M. We plot it as the halo multiplicity function
M2r21dn/dM (symbols with 1-j error bars), where r is the mean density of
the Universe. Groups of particles were found using a friends-of-friends
algorithm6 with linking length equal to 0.2 of the mean particle separation.
The fraction of mass bound to haloes of more than 20 particles (vertical
dotted line) grows from 6.42 £ 1024 at z ¼ 10.07 to 0.496 at z ¼ 0. Solid
lines are predictions from an analytic fitting function proposed in previous
work11, and the dashed blue lines give the Press–Schechter model14 at
z ¼ 10.07 and z ¼ 0.
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Springel+05

# halos per volume per mass 
interval 

dimensionless when expressed 
in terms of ‘multiplicity function’ 

massive halos >M* 
exponentially suppressed (e.g., 
galaxy clusters today) 

MW halo ≈1012 Msun 

Press-Schechter is analytic 
derivation; better fits given by 
Seth-Tormen function



(Nearly) universal dark matter halo profile
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Navarro, Frenk, White 96

NFW profile

fits halos of all masses in N-
body sims
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Navarro, Frenk, White 96

Halo concentration

Lower-mass halos are more 

concentrated (form earlier, 

when Universe was denser)

higher mass

lower mass



Concentration correlates with halo mass

Bullock+01

Dark matter halo profiles form 

an (approximately) two-

parameter family (M200 and z) 

[Historical note: original NFW paper 

focused on z=0 so said ‘one-

parameter’ family]



In CDM simulations, 

NFW emerges 

independent of 

cosmological 

parameters (e.g., 

Ωm≣Ω0) and power 

spectrum of initial 

conditions (spectral 

index n) 

still not fully understood

NFW profile is a generic outcome of CDM models496 NAVARRO, FRENK, & WHITE Vol. 490

FIG. 2.ÈDensity proÐles of one of the most massive halos and one of the least massive halos in each series. In each panel, the low-mass system is
represented by the leftmost curve. In the SCDM and CDM" models, radii are given in kiloparsecs (scale at top), and densities are in units of 1010 kpc~3.M

_In all other panels, the units are arbitrary. The density parameter, and the value of the spectral index, n, are given in each panel. The solid lines are Ðts to)0,
the density proÐles using The arrows indicate the value of the gravitational softening. The virial radius of each system is in all cases 2 orders ofeq. (1).
magnitude larger than the gravitational softening.

P3M simulation, together with extra high frequency waves
added to Ðll out the power spectrum between the Nyquist
frequencies of the old and new particle grids. The regions
beyond the ““ high-resolution ÏÏ box are coarsely sampled
with a few thousand particles of radially increasing mass in
order to account for the large-scale tidal Ðelds present in the
original simulation.

This procedure ensures the formation of a clump similar
in all respects to the one selected in the P3M run, except for
the improved numerical resolution. The size of the high-
resolution box scales naturally with the total mass of each
system, and as a result all resimulated halos have about the
same number of particles within the virial radius at z \ 0,
typically between 5000 and 10,000. The extensive tests pre-
sented in et al. indicate that this number ofNavarro (1996)
particles is adequate to resolve the structure of a halo over
approximately two decades in radius. We therefore choose
the gravitational softening, to be 1% of the virial radiush

g
,

in all cases. (This is the scale length of a spline softening ; see
& White for a deÐnition.) The tree codeNavarro 1993

carries out simulations in physical, rather than comoving,
coordinates and uses individual time steps for each particle.
The minimum time-step depends on the maximum density
resolved in each case, but it was typically 10~5H0~1.

As discussed in et al. numerically con-Navarro (1996),
vergent results require that the initial redshift of each run,

should be high enough that all resolved scales in thezinit,initial box are still in the linear regime. In order to satisfy
this condition, we chose so that the median initial dis-zinitplacement of particles in the high-resolution box was
always less than the mean interparticle separation. Prob-
lems with this procedure may arise if is so high that thezinitgravitational softening (which is kept Ðxed in physical
coordinates) becomes signiÐcantly larger that the mean
initial interparticle separation. We found this to be a
problem only for the smallest masses, in theM [ M*,
n \ 0, model. In this case, the initial redshift pre-)0 \ 0.1
scribed by the median displacement condition is zinit [ 700,
and the gravitational softening is then a signiÐcant fraction
of the initial box. This can a†ect the collapse of the earliest

NFW97



Aquarius zoom-in simulations (dark matter only)

Springel+08

6 Mh~1012 Msun halos, ultra-high res. (up to 109 particles within Rvir)



Einasto profile                 is better fit at small radiusDiversity and similarity of simulated CDM haloes 27

Figure 3. Left-hand panel: spherically averaged density profiles of all level-2 Aquarius haloes. Density estimates have been multiplied by r2 in order to
emphasize details in the comparison. Radii have been scaled to r−2, the radius where the logarithmic slope has the ‘isothermal’ value, −2. Thick lines show
the profiles from r

(7)
conv outwards; thin lines extend inwards to r

(1)
conv. For comparison, we also show the NFW and M99 profiles, which are fixed in these scaled

units. This scaling makes clear that the inner profiles curve inwards more gradually than NFW, and are substantially shallower than predicted by M99. The
bottom panels show residuals from the best fits (i.e. with the radial scaling free) to the profiles using various fitting formulae (Section 3.2). Note that the Einasto
formula fits all profiles well, especially in the inner regions. The shape parameter, α, varies significantly from halo to halo, indicating that the profiles are not
strictly self-similar: no simple physical rescaling can match one halo on to another. The NFW formula is also able to reproduce the inner profiles quite well,
although the slight mismatch in profile shapes leads to deviations that increase inwards and are maximal at the innermost resolved point. The steeply cusped
Moore profile gives the poorest fits. Right-hand panel: same as the left, but for the circular velocity profiles, scaled to match the peak of each profile. This
cumulative measure removes the bumps and wiggles induced by substructures and confirms the lack of self-similarity apparent in the left-hand panel.

α fixed to a single value, residuals are smaller and have less radial
structure than those from either NFW or M99.

We show this in Fig. 4, where we plot the minimum-Q(Qmin)
values of the best Einasto fits for all six level-2 Aquarius haloes,
as a function of the shape parameter α. For given value of α, the
remaining two free parameters of the Einasto formula are allowed to
vary in order to minimize Q2. Different line types correspond to dif-
ferent numbers of bins used to construct the profile (from 20 to 50),
chosen to span in all cases the same radial range, 0.01 < r/r−2 < 5,
a factor of 500 in radius. Minimum-Q values are computed using a
similar procedure for the NFW and M99 formulae, and are shown,
for each halo, with symbols of corresponding colour.

In terms of Qmin, Einasto fits are consistently superior to NFW
or M99, whether or not the α parameter is adjusted freely. For
example, for fixed α = 0.15, all Einasto best fits have minimum-Q
values below ∼0.03. For comparison, best NFW and M99 fits have
an average ⟨Qmin⟩ ∼ 0.06 and 0.095, respectively. These numbers
correspond to Nbins = 20, but they are rather insensitive to Nbins, as
may be judged from the small difference between the various lines
corresponding to each halo in Fig. 4.

We emphasize that, although the improvement obtained with
Einasto’s formula is significant, NFW fits are still excellent, with a
typical rms deviation of just ∼6 per cent over a range of 500 in ra-
dius. The use of the NFW formula may thus be justified for applica-
tions where this level of accuracy is sufficient over this radial range.

When α is adjusted as a free parameter, ⟨Qmin⟩ ∼ 0.018 for
Einasto fits. Furthermore, there is, for each halo, a well-defined
value of α that yields an absolute minimum in Q. The Q-dependence
on α about this minimum is roughly symmetric and, as expected,
nearly independent of the number of bins used in the profile. The

Figure 4. Minimum-Q values as a function of the Einasto parameter α for
best fits to all level-2 halo profiles in the radial range 0.01 < r/r−2 < 5.
Colours identify different haloes, and line types identify the number of
bins chosen for the profile. The minimum-Q values obtained for NFW and
M99 best fits are also shown, and are plotted at arbitrary values of α for
clarity. Note that Einasto fits are consistently better than NFW which are
consistently better than M99, and that a significant improvement in Q is
obtained when letting α vary in the Einasto formula. Q is approximately
independent of the number of bins used in the profile, and is minimized for
different values of α for each individual halo (see the text for further details).

C⃝ 2009 The Authors. Journal compilation C⃝ 2009 RAS, MNRAS 402, 21–34
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1704 V. Springel et al.

2000; Fukushige & Makino 2001; Klypin et al. 2001; Jing & Suto
2002; Fukushige & Makino 2003; Power et al. 2003; Fukushige,
Kawai & Makino 2004; Navarro et al. 2004; Diemand et al. 2005;
Stoehr 2006; Knollmann, Power & Knebe 2008).

It has often been claimed that the inner cusps of haloes and sub-
haloes may have slopes less than −1, with some studies even propos-
ing an asymptotic slope of −1.5 (Moore et al. 1999b; Fukushige
& Makino 2001). For main haloes this proposition has been ruled
out in recent years by newer generations of simulations. Neverthe-
less, the idea that the asymptotic slope is typically steeper than −1
(e.g. ∼−1.2) is still widespread and has been reiterated in recent
papers, even though this is clearly inconsistent with e.g. Fig. 4 or
the numerical data in Navarro et al. (2004).

With respect to the density profiles of subhaloes, the situation is
even more unclear. So far few studies have examined this question
directly. Stoehr (2006) found that the circular velocity curves of
subhaloes are best fitted by a parabolic function relating log V to
log r, implying that the density profiles become shallower in the
centre than NFW. On the other hand, Diemand et al. (2008) recently
argued that subhaloes have steep cusps with a mean asymptotic slope
of −1.2.

We want to emphasize from the outset that the nature of halo and
subhalo density profiles, becoming gradually and monotonically
shallower towards the centre, makes it easy to arrive at the wrong
conclusion for the structure of the inner cusp. Almost all numerical
simulations to date have been able to produce demonstrably con-
verged results for the density profile only in regions where the local
slope is significantly steeper than −1. They have also all shown that
the slope at the innermost measured point is significantly shallower
than at radii a factor of a few further out. Thus, although no slope as
shallow as −1 has been found, there is also no convincing evidence
that the values measured are close to the asymptotic value, if one
exists. Most claims of steep inner cusp slopes are simply based on
the assertion that the slope measured at the innermost resolved point
continues all the way to the centre.

Navarro et al. (2004) argued that the local logarithmic slope of
halo profiles changes smoothly with radius and is poorly fitted by
models like those of NFW or Moore that tend to an asymptotic
value on small scales. They showed that in their simulation data the
radial change of the local logarithmic slope can be well described
by a power law in radius, of the form

d log ρ

d log r
= −2

(
r

r−2

)α

, (14)

which corresponds to a density profile

ρ(r) = ρ−2 exp
{

− 2
α

[(
r

r−2

)α

− 1
]}

. (15)

Here ρ−2 and r−2 are the density and radius at the point where the
local slope is −2. This profile was first used by Einasto (1965) to
describe the stellar halo of the Milky Way, so we refer to it as the
Einasto profile. The introduction of a shape parameter, α may be
expected, of course, to provide improved fits, but we note that fixing
α ∼ 0.16 gives a two-parameter function which still fits mean halo
profiles much better than the NFW form over a wide range of halo
masses (i.e. with maximum residuals of a few per cent rather than
10 per cent; Gao et al. 2007). Further evidence for a profile where
local slope changes gradually has been presented by Stoehr et al.
(2003); Graham et al. (2006); Stoehr (2006). For reference, we note

that the enclosed mass for the Einasto profile is

M(r) =
4πr3

−2ρ−2

α
exp

(
3 ln α + 2 − ln 8

α

)
γ

[
3
α

,
2
α

(
r

r−2

)α]
,

(16)
where γ (a, x) is the lower incomplete gamma function. For a value
of α = 0.18 the radius where the maximum circular velocity peaks
is given by rmax = 2.189 r−2, and the maximum circular velocity is
related to the parameters of the profile by V 2

max = 11.19Gr2
−2 ρ−2.

No published simulation to date has had enough dynamic range
to measure the logarithmic slope of the density profile in the region
where the Einasto model would predict it to be shallower than −1,
so only indirect arguments could be advanced for this behaviour
(Navarro et al. 2004). This situation has changed with the Aquarius
Project, as can be seen from Fig. 4, and in Navarro et al. (2008)
we provide a detailed analysis of this question. In the following,
we focus on the density profiles of dark matter subhaloes, where
the available particle number is, of course, much smaller. Our best
resolved subhaloes in the Aq-A-1 simulation contain more than 10
million particles, allowing a relatively precise characterization of
their density profiles. Until recently, such particle numbers repre-
sented the state of the art for simulations of main haloes.

In Fig. 22, we show spherically averaged density profiles for nine
subhaloes within the Aq-A halo. For each we compare up to five
different resolutions, covering a factor of ∼1835 in particle mass.
The density profiles line up quite well outside their individual res-
olution limits, as predicted by the convergence criterion of Power
et al. (2003) in the form given in equation (3). Individual profiles
in the panels are plotted as thick solid lines at radii where conver-
gence is expected according to this criterion, but they are extended
inwards as thin lines to twice the gravitational softening length (the
gravitational force is exactly Newtonian outside the radii marked by
vertical dashed lines). These density profiles are based on particles
that are gravitationally bound to the subhaloes, but for comparison
we also show a profile for each subhalo that includes all the mass
(i.e. including unbound particles; thick dashed lines). It is clear
that the background density dominates beyond the ‘edge’ of each
subhalo. It is therefore important that this region is excluded when
fitting analytic model density profiles to the subhaloes.

In making such fits, we restrict ourselves to the radial range
between the convergence radius (equation 3) and the largest radius
where the density of bound mass exceeds 80 per cent of the total
mass density. The density profiles themselves are measured in a set
of radial shells spaced equally in log r. To define the best fit, we
minimize the sum of the squared differences in the log between
measurement and model, i.e. we characterize the goodness of fit by
a quantity

Q2 = 1
Nbins

∑

i

[ln ρi − ln ρmodel(ri)]2, (17)

where the sum extends over all bins i. We then minimize Q with
respect to the parameters of the model profile. We have included
such fits as thin solid lines in Fig. 22, based on the Einasto profile,
allowing the third parameter α to vary as well. The resulting values
of α and the maximum circular velocities of the subhaloes, as well
as their mass and distance to the main halo’s centre are shown as
labels in the individual panels.

It is clear from Fig. 22 that the Einasto profile provides a good
description of subhalo radial density profiles, but due to the large
dynamic range on the vertical axis combined with the narrow radial
range over which the density profile can be fitted, it is not clear in
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Note: Einasto is Sérsic with I replaced by ρ and R (projected) replaced by r (3D)



Dark matter substructure

See Mike’s review.  
How many sub-halos in MW? 

Extrapolations 

Important for dark matter annihilation predictions, 2-body 
so sensitive to boost factor
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Einasto profile (a fit to our measurements yields a shape parameter
α = 0.678 and scale radius r−2 =199 kpc = 0.81 r200). It is thus
tempting to conjecture that this behaviour continues to (arbitrarily)
small subhalo masses. If true, an interesting corollary is that there
must be a smooth dark matter component which dominates the inner
regions of haloes. Only the outer parts may have a substantial mass
fraction in lumps (see also Fig. 7). This contrasts with previous
speculations (Calcáneo-Roldán & Moore 2000; Moore et al. 2001)
that all the mass of a halo may be bound in subhaloes.

Further light on this question is shed by Fig. 12, where we show
the local mass fraction in subhaloes as a function of radius. In the
top panel, we compare results for our six different haloes, with the
radial coordinate normalized by r50. While there is some scatter
between the different haloes, the general behaviour is rather similar
and shows a rapid decline of the local mass fraction in substructures
towards the inner parts of each halo. The mean of the six simulations
(thick red line) is well fitted by a gently curving power law. It can
be parametrized by

fsub = exp
[
γ + β ln(r/r50) + 0.5 α ln2(r/r50)

]
, (11)

with parameters α = −0.36, β = 0.87 and γ = −1.31. This fit
is shown in the upper two panels of Fig. 12 as a thin black line.
The middle panel is the same measurement, but for all the different
resolution simulations of the Aq-A halo, while the bottom panel
is the corresponding cumulative plot. These two panels give an
impression of how well numerical convergence is achieved for this
quantity.

An interesting implication from Fig. 12 is an estimate of the frac-
tion of the mass in substructures near the solar circle (marked by a
vertical dashed line). At r = 8 kpc, the expected local mass fraction
in substructure has dropped well below 10−3. This measurement ap-
pears converged, and accounting for unresolved substructure does
not raise the fraction above 10−3 (compare Fig. 7). The dark mat-
ter distribution through which the Earth moves should therefore be
mostly smooth, with only a very small contribution from gravita-
tionally bound subhaloes.

4 SU B H A L O E S I N S I D E S U B H A L O E S

In our simulations, we find several levels of substructure within
substructure. Fig. 13 illustrates this by showing individually six of
the largest Aq-A-1 subhaloes in enlarged frames. Clearly, all of these
subhaloes have embedded substructures. Sometimes these second-
generation subhaloes contain a further (third) level of substructure
and, in a few cases, we even find a fourth generation of subhaloes
embedded within these. An example is given in the bottom row of
Fig. 13, which zooms recursively on regions of the subhalo labelled
‘f’ in the top left-hand panel. As shown in the bottom left-hand panel,
subhalo ‘f’ has several components, each of which has identifiable
subcomponents; we are able to identify up to four levels of this
hierarchy of substructure in this system. We note that the hierarchy
of nested structures is established directly by the recursive nature of
the SUBFIND algorithm; at each level, a given substructure and its
parent structure are surrounded by a common outer density contour
that separates them from the next level in the hierarchy.

It is important to quantify in detail the hierarchical nature of
substructure, since this may have a number of consequences re-
garding indirect and direct dark matter search strategies. Recently,
Shaw et al. (2007) suggested that the (sub)substructure distribution
in subhaloes might be a scaled version of the substructure distri-
bution in main haloes. This claim has been echoed by Diemand
et al. (2008), who report roughly equal numbers of substructures

0.01 0.10 1.00
r / r50

10-5

10-4

10-3

10-2

10-1

100

f su
b

  l
oc

 

Aq-A-2

Aq-B-2

Aq-C-2

Aq-D-2

Aq-E-2

Aq-F-2

1 10 100
r  [ kpc ]

10-5

10-4

10-3

10-2

10-1

100

f su
b

  l
oc

 

Aq-A-1
Aq-A-2
Aq-A-3
Aq-A-4
Aq-A-5

1 10 100
r  [ kpc ]

10-5

10-4

10-3

10-2

10-1

100
f su

b
  c

um
ul
(<

r)

Aq-A-1
Aq-A-2
Aq-A-3
Aq-A-4
Aq-A-5

Figure 12. The mass fraction in subhaloes as a function of radius. In the
top panel, we show results for the local mass fraction in substructures for
our six different haloes, as a function of radius normalized by r50. The
thick solid line shows the average of all the runs. In the middle panel, we
consider the same quantity for the different resolution simulations of the Aq-
A halo, while in the bottom panel we show the corresponding cumulative
substructure fractions in the Aq-A halo. The solid line in the two upper panels
is an empirical fit with a slowly running power-law index. The vertical dotted
lines at 8 kpc in the middle and bottom panels mark the position of the solar
circle; here the expected local mass fraction in subhaloes has dropped well
below 10−3. The outer vertical dotted lines mark r50 for the Aq-A halo.
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Cumulative mass fraction in sub-halos

≈10% halo mass in sub-halos
Springel+08

sub-halos get disrupted by tidal 
forces as they sink into parent halos 

owing to dynamical friction 

convergence 
study:
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Kravtsov 2013

Quantitative relationship between galaxy and halo sizes

Can use abundance matching 

(most massive galaxies in most 

massive halos) to connect galaxy 

to halo properties 

At z=0,


